Vast Portfolio Selection with Gross-exposure Constraints().

نویسندگان

  • Jianqing Fan
  • Jingjin Zhang
  • Ke Yu
چکیده

We introduce the large portfolio selection using gross-exposure constraints. We show that with gross-exposure constraint the empirically selected optimal portfolios based on estimated covariance matrices have similar performance to the theoretical optimal ones and there is no error accumulation effect from estimation of vast covariance matrices. This gives theoretical justification to the empirical results in Jagannathan and Ma (2003). We also show that the no-short-sale portfolio can be improved by allowing some short positions. The applications to portfolio selection, tracking, and improvements are also addressed. The utility of our new approach is illustrated by simulation and empirical studies on the 100 Fama-French industrial portfolios and the 600 stocks randomly selected from Russell 3000.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vast Volatility Matrix Estimation using High Frequency Data for Portfolio Selection.

Portfolio allocation with gross-exposure constraint is an effective method to increase the efficiency and stability of portfolios selection among a vast pool of assets, as demonstrated in Fan et al. (2011). The required high-dimensional volatility matrix can be estimated by using high frequency financial data. This enables us to better adapt to the local volatilities and local correlations amon...

متن کامل

Asset Allocation and Risk Assessment with Gross Exposure Constraints for Vast Portfolios

Markowitz (1952, 1959) laid down the ground-breaking work on the mean-variance analysis. Under his framework, the theoretical optimal allocation vector can be very different from the estimated one for large portfolios due to the intrinsic difficulty of estimating a vast covariance matrix and return vector. This can result in adverse performance in portfolio selected based on empirical data due ...

متن کامل

MULTIPERIOD CREDIBILITIC MEAN SEMI-ABSOLUTE DEVIATION PORTFOLIO SELECTION

In this paper, we discuss a multiperiod portfolio selection problem with fuzzy returns. We present a new credibilitic multiperiod mean semi- absolute deviation portfolio selection with some real factors including transaction costs, borrowing constraints, entropy constraints, threshold constraints and risk control. In the proposed model, we quantify the investment return and risk associated with...

متن کامل

Developing a multi objective possibilistic programming model for portfolio selection problem

Portfolio selection problem is one of the most important issues in the area of financial management in which is attempted to allocate wealth to different assets with controlling the return and risk. The aim of this paper is to obtain the optimum portfolio with regard to the cardinality and threshold constraints. In the paper, a novel multi-objective possibilistic programming model is developed ...

متن کامل

Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange

Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Statistical Association

دوره 107 498  شماره 

صفحات  -

تاریخ انتشار 2012